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Abstract

Laminar ¯ow forced convective heat transfer in ducts with slowly varying cross-section is analysed. The analysis is

based on a simplifying assumption concerning the velocity ®eld, called the similarity assumption. It is assumed that the

axial velocity pro®le is locally fully developed, irrespective of the variation of the cross-sectional area with axial po-

sition. It is shown that in the axisymmetric case (circular tube with varying diameter) for boundary conditions of the

®rst kind the diameter variation has no in¯uence at all on the heat transferred. As in the case of a tube with constant

diameter, the degree of temperature equilibration depends only on the Fourier number

Fo � paL
Q

that is on the ratio of length of the tube, L, to ¯ow rate Q. In the case of a plane channel, however, variations of the

channel height 2H have a pronounced in¯uence on the transfer coe�cient. It is shown that the degree of equilibration

depends only on the e�ective Fourier number

Foeff � aB
Q
�
Z L

0

dz
H�z� :

The heat transfer is enhanced by a narrow design of the duct. These results hold for any shape of the axial velocity

distribution over the duct cross-section, provided the above-mentioned similarity assumption is justi®ed.

By analogy, all foregoing results are also applicable to the convective±di�usive mass transfer in ¯ow through ducts

with slowly varying cross-section.

The range of validity of the similarity assumption is discussed in a hydrodynamic section. It can be shown that for

creeping ¯ow of a Newtonian liquid in an in®nite cone or wedge this assumption is a very good approximation to the

exact solution of Stokes' equations for cone or wedge angles up to 30°. Apart from Newtonian creeping ¯ow, the

assumption might well be applicable in the duct ¯ow of a power-law ¯uid and in pure elongational ¯ow as encountered

in stretching ®laments or sheets of liquid, where the axial velocity is constant over the cross-section. Ó 2001 Elsevier

Science Ltd. All rights reserved.

1. Introduction

Laminar ¯ow forced convection in ducts has been a

subject of engineering research since the fundamental

papers of both Graetz [1] and Nusselt [2]. The thermal

entrance problem for hydrodynamically developed ¯ow

in a circular tube, ®rst tackled independently by those

authors and later by several others, is nowadays known

as the Graetz problem or Graetz±Nusselt problem [3].

Numerous extensions or modi®cations of the problem

have been treated in the last few decades. Examples are a

variety of boundary conditions, the e�ect of axial con-

duction, non-Newtonian ¯uid ¯ow and duct cross-sec-

tions other than circular. In particular, fully-developed

¯ow between parallel plates (slit ¯ow) is of great
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practical importance. An overview of work on these

topics for Newtonian ¯ow up to 1978 is given by the

monograph of Shah and London [4]. Solutions for non-

Newtonian ¯ow can be found in [5,6].

The objective of this paper is to analyse the in¯uence

of a varying duct cross-section on the laminar convec-

tive±conductive heat transfer. This subject, though of

little relevance for conventional heat exchangers, is of

particular interest in the polymer producing and pro-

cessing industries, since many polymer melt ¯ow systems

comprise nozzles, dies and manifolds in which the

above-mentioned conditions are applicable. Examples

for such ¯ow geometries are sheet extrusion dies, un-

derwater pelletiser die-heads, spinnerets, etc. In most of

these applications high viscosity polymer melt ¯ow in

comparatively small scale ducts is encountered. Hence,

the analysis may be restricted to nearly zero Reynolds

number (creeping) ¯ow, thus omitting the inertia terms

in the momentum balance equations.

Two fundamental ¯ow systems are considered in this

paper: Flow in a circular tube with slowly varying di-

ameter and plane channel ¯ow with slowly varying

channel height. In order to facilitate an analytical

treatment of the convection±conduction problem, a

simplifying assumption concerning the ¯ow kinematics

is used. This assumption is introduced in the following

Section 2 without further ¯uid-mechanical justi®cation.

Sections 3 and 4 deal with the consequences for the

convective±conductive heat transfer in ducts with vary-

ing cross-sectional area. Finally, in Section 5, as a jus-

ti®cation for the kinematic assumption, its range of

validity is checked by means of comparison with exact

analytical solutions for Newtonian creeping ¯ow in a

semi-in®nite cone or wedge.

2. Kinematics of ¯ow in ducts with non-uniform cross-

section

2.1. Circular tube with slowly varying diameter

Consider the laminar ¯ow of an incompressible vis-

cous liquid in a circular tube with slowly varying

diameter (Fig. 1). From the ¯uid-mechanical point of

view, it seems reasonable to assume that the axial

velocity component approximates the fully-developed

velocity pro®le to a certain degree of accuracy, de-

pending on the rheological properties of the ¯uid, the

Reynolds number and the duct contour function R�z�.
This issue has been discussed, for instance, by Batchelor

for the Newtonian case [7]. A detailed enquiry on the

accuracy of this assumption for creeping ¯ow of a

Newtonian liquid is given in Section 5.

Nomenclature

a (m2/s) thermal di�usivity of liquid

B (m) channel width

F (dimensionless) dimensionless stream function

(axisymmetric ¯ow)

f (dimensionless) dimensionless velocity pro®le

function (axisymmetric ¯ow)

G (dimensionless) dimensionless stream function

(plane ¯ow)

g (dimensionless) dimensionless velocity pro®le

function (plane ¯ow)

H (m) half of channel height

L (m) duct length

p (Pa) pressure

Q (m3/s) volumetric ¯ow rate

q (W/m2) heat ¯ux density

R (m) tube radius

r (m) radial co-ordinate

T (K) temperature
�T (K) (¯ow average) bulk temperature

u, v, w (m/s) velocity components

�w (m/s) average axial velocity

x, y, z (m) Cartesian co-ordinates

Fo (dimensionless) Fourier number

Nu (dimensionless) Nusselt number

Re (dimensionless) Reynolds number

Greek symbols

a (dimensionless) wall inclination angle

D (1/m2) Laplacian operator

q (m) radius (spherical polar

co-ordinates)

# (dimensionless) angle (spherical polar

co-ordinates)

k (W/m2 K) thermal conductivity

l (Pa s) dynamic viscosity

H (dimensionless) dimensionless temperature
�H (dimensionless) dimensionless bulk temperature

x (dimensionless) angle (cylindrical polar

co-ordinates)

W (m3/s) stream function (axisymmetric

¯ow)

U (m2/s) stream function (plane ¯ow)

g; f (dimensionless) dimensionless co-ordinates

Subscripts

0 entrance value

w value at duct wall

e� e�ective value

loc local value

SA according to the similarity

assumption
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Let f �g� be the shape function of the fully-developed

axial velocity pro®le in a tube with constant radius R0,

that is

w�r� � �w � f r
R0

� �
; �1�

where �w � Q=pR2
0 denotes the mean axial velocity and

g � r=R0 is a reduced radial co-ordinate. The similarity

assumption for ¯ow in a tube with varying cross-section

means that the axial velocity pro®le has the same shape

as in the constant diameter case [7]

w�r; z� � �w�z� � f r
R�z�

� �
; �2�

where the mean axial velocity depends on z:

�w�z� � Q=p�R�z��2. The radial velocity component may

be calculated by integrating the continuity equation. In

order to simplify the derivation, the stream function for

axisymmetric ¯ow, W�r; z�, is introduced, thus satisfying

the continuity equation identically:

w�r; z� � 1

r
oW
or
; �3a�

v�r; z� � ÿ 1

r
oW
oz
: �3b�

Formulated in terms of the stream function, the simi-

larity assumption reads

W�r; z� � Q
p
� F r

R�z�
� �

; �4�

where F �g� is the dimensionless stream function for

fully-developed ¯ow in a tube with constant diameter.

The speci®c shape of F �g� depends on the rheological

properties of the ¯uid and the boundary conditions at

the tube wall. Using the de®ning Eqs. (3a) and (3b) it is

found from Eq. (4) that

w�r; z� � Q
p
� 1

rR�z� � F
0�g� � �w�z� F

0�g�
g

�5a�

and

v�r; z� � Q
p
� R0�z�
�R�z��2 � F

0�g� � �w�z�R0�z�F 0�g�: �5b�

The prime applied to a function of a single variable

denotes a derivative with respect to that variable.

Comparing the right-hand sides of Eqs. (5a) and (5b) a

general relation between the radial and the axial velocity

component is found, which holds irrespective of the

speci®c choice of the stream function F �g�
v�r; z� � gR0�z�w�r; z�: �6�
As a consequence of the similarity assumption, the

radial velocity component is proportional to the axial

velocity component, the reduced radial co-ordinate g
and the tangent of the wall inclination angle

tana � dR=dz. The relation between the axial velocity

shape function f �g� and the dimensionless stream

function F �g� is

f �g� � F 0�g�
g

: �7�

As an example, Fig. 2 shows the stream lines for New-

tonian ¯ow in a tube with axially varying cross-section,

calculated by means of the similarity assumption. Each

stream line can be constructed from the wall contour

function R�z� by multiplication with the appropriate

value of the reduced radial co-ordinate g.

Fig. 2. Stream-lines in a tube with non-uniform diameter, calculated by means of the similarity assumption for Newtonian ¯ow, i.e.

parabolic distribution of the axial velocity in each cross-section.

Fig. 1. An illustration of the convection±conduction problem in ducts with varying cross-section.

H. Brod / International Journal of Heat and Mass Transfer 44 (2001) 977±987 979



2.2. Plane channel with slowly varying height

In the following, it is assumed that the axial velocity

component is symmetric with respect to y � 0, that is

w�ÿy; z� � w�y; z�. Introducing a stream function U�y; z�
for two-dimensional plane ¯ow which is de®ned by the

relations

w�y; z� � oU
oy
; �8a�

v�y; z� � ÿ oU
oz

�8b�

the similarity assumption can be formulated as

U�y; z� � Q
2B
� G y

H�z�
� �

; �9�

where G�g� is a dimensionless stream function which

depends solely on the reduced lateral co-ordinate

g � y=H�z�. The channel height is 2H�z�. Q=B denotes

the volumetric ¯ow rate per unit width of the channel.

Combined with the symmetry assumption, this de®nition

of G�g� ensures that G�1� ÿ G�0� � G�0� ÿ G�ÿ1� � 1.

Calculating the velocity components from Eqs. (8a)±(9),

one ®nds:

w�y; z� � Q
2B
� G0�g� � 1

H�z� � �w�z�G0�g�

� �w�z�g�g�; �10a�

v�y; z� � Q
2B
� G0�g� � yH 0�z�

�H�z��2 � �w�z�H 0�z�gg�g�: �10b�

In Eqs. (10a) and (10b) the mean axial velocity

�w�z� � Q=2BH�z� has been introduced, as well as a

shape function g�g� � G0�g� which describes the distri-

bution of the axial velocity component in dimensionless

form. Because of the assumed symmetry g�ÿg� � g�g�.
A comparison of Eqs. (10a) and (10b) yields the relation

v�y; z� � gH 0�z�w�y; z� �11�
which is identical to the tube case.

3. Laminar forced convection in a circular tube with

slowly varying diameter

Neglecting axial conduction and heat sources

(viscous dissipation, chemical reactions) and assuming

constant thermal properties and rotational symmetry,

the energy equation can be written

w�r; z� oT
oz
� v�r; z� oT

or
� a

r
o
or

r
oT
or

� �
; �12�

where a denotes the thermal di�usivity of the liquid. The

velocity components are given by Eqs. (2) and (6). As-

suming a uniform entrance temperature T0 and a sudden

jump of the wall temperature from T0 to Tw at the axial

position z � 0, the following boundary conditions hold:

z � 0; 06 r6R0 ) T � T0; �13a�

z > 0; r � R�z� ) T � Tw; �13b�

z > 0; r � 0 ) oT
or
� 0: �13c�

Note that the following derivation is also valid for

generalized boundary conditions of the ®rst kind, that is

for a prescribed wall temperature pro®le Tw � Tw�z�. For

the sake of simplicity, the derivation shall be given only

for a wall temperature jump at z � 0.

At ®rst glance the system of Eqs. (2), (6), (12)±(13c)

seems rather complicated. However, as has been pointed

out before by the author [8] for the special case f �g� � 1,

a signi®cant simpli®cation may be achieved by a suitable

transformation. Introducing the new variables

g�r; z� :� r
R�z� ; �14a�

H�g; z� :� T �r; z� ÿ Tw

T0 ÿ Tw
�14b�

into Eq. (12) it is found that

w�r; z� oH
oz

�
� oH

og
og
oz

�
� v�r; z� oH

og
og
or

� a
g

o
og

g
oH
og

� �
og
or

� �2

: �15�

Upon substitution of the partial derivatives of g with

respect to r and z and use of relation Eq. (6) between the

two velocity components, it is found that the radial

convective term in Eq. (15) is cancelled out, yielding the

following simpli®ed equation:

w�r; z��R�z��2 oH
oz
� a

g
o
og

g
oH
og

� �
: �16�

The elimination of the radial convective term could be

anticipated: With the assumed kinematics, the stream

lines are characterised by constant values of g. This

implies that g is a material or Lagrangian co-ordinate.

No convective transport terms may occur within a La-

grangian temperature ®eld description. However, if axial

conduction had to be accounted for, the simpli®cation

of the convective terms would have been outweighed by

a complication of the conductive terms. Apart from

¯uid-mechanical considerations this is another reason to

restrict the analysis to small wall inclination angles a.

Using Eq. (2), the product wR2 in Eq. (16) may be

expressed by the volumetric ¯ow rate Q and the velocity

shape function f �g�:
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w�r; z��R�z��2 � Q
p

f �g�: �17�

This completes the transformation to the new indepen-

dent variables. Finally, introducing a new dimensionless

axial co-ordinate

f :� paz
Q

�18�

the heat equation can be written

f �g� oH
of
� 1

g
o
og

g
oH
og

� �
: �19�

The dimensionless axial co-ordinate f is a Fourier or

reciprocal Graetz number. In most of the current liter-

ature the Graetz number Gz � Q=�paz� is applied for

forced convection in ducts whereas the Fourier number

is used in unsteady heat transfer problems to de®ne a

dimensionless time. However, the author prefers to ap-

ply the Fourier number also in duct heat transfer cal-

culations. This habit emphasises the close familiarity

between unsteady heat or mass transfer problems and

steady laminar forced convection. This familiarity has

been stressed in an earlier paper [8]. Readers who reject

the use of a Fourier number in forced convection

problems are asked to understand this term as a tech-

nical abbreviation for the reciprocal value of the Graetz

number.

The boundary conditions, written in terms of the

dimensionless variables H; g and f, are:

f � 0; 06 g6 1 ) H � 1; �20a�

f > 0; g � 1 ) H � 0; �20b�

f > 0; g � 0 ) oH
og
� 0: �20c�

Surprisingly, in di�erential Eq. (19) and boundary Eqs.

(20a)±(20c) there is no more explicit dependence on the

tube contour function R�z�. Those equations merely

constitute the dimensionless form of a generalised

Graetz problem for ¯ow in a tube with uniform diam-

eter. (The attribute `generalised' refers to the arbitrary

axial velocity pro®le f �g� in contrast to the parabolic

velocity pro®le of the `classical' Graetz problem.) From

this result, the following invariance property for laminar

forced convective transport in axisymmetric ¯ow with

varying cross-section can be deduced:

Let Hf
r

R0
; paz

Q

� �
be the non-dimensionalised solution1 of

the generalised Graetz problem for a tube with uniform

radius R0. Then the solution to the analogous problem

with varying tube radius R�z� is given by Hf
r

R�z� ;
paz
Q

� �
,

provided the velocity ®eld obeys the similarity assumption.

In particular, the dimensionless bulk temperature is

invariant with respect to the tube contour function R�z�
and solely dependent on the tube Fourier number. To

realise this, consider the de®nition of the bulk (¯ow

average) temperature

�Tf �z� :� 1

Q
�
Z R�z�

0

Tf �r; z�w�r; z�2pr dr: �21�

Transforming Eq. (1) to the dimensionless quantities

yields

�Hf �f� �
Z 1

0

Hf �g; f�f �g�2gdg �22�

which is independent of the tube contour function R�z�.
Hence, any published results for the dependence of the

bulk temperature on the Fourier (or Graetz) number can

be generalised as well for those cases where the tube

radius is weakly non-uniform and the ¯ow ®eld may be

described by the similarity assumption.

Finally, the invariance relation shall be formulated in

terms of the local and average tube Nusselt numbers.

Consider the wall heat ¯ux density for any velocity

shape function f and arbitrary tube contour function

R�z�

qw;f � ÿk
oTf �r; z�

or

����
r�R�z�

� ÿk
T0 ÿ Tw

R�z�
oHf �g; f�

og

����
g�1

: �23�

Obviously, the wall heat ¯ux density is inversely pro-

portional to the local tube radius. However, if the local

Nusselt number is de®ned with the local tube radius, it

turns out to be invariant with respect to the tube con-

tour function

Nuloc;f � qw;f R�z�
k �Tf �z� ÿ Tw

� � � ÿ 1
�Hf �f�

oHf �g; f�
og

����
g�1

: �24�

From an over-all heat balance for a tube section of

length dz the following relation can be deduced [9]

oHf �g; f�
og

����
g�1

� 1

2
� d

�Hf �f�
df

: �25�

Inserting Eq. (25) into Eq. (24), the average Nusselt

number can be calculated as

Nuf � 1

f
�
Z f

0

Nuloc;f df � ÿ 1

2f
� ln� �Hf �f��: �26�

This means that any result given in the literature for the

average Nusselt number in a tube of constant radius for

1 Throughout this section, the subscript `f' is used as a

reminder that the quantity attributed with it is a functional of

the particular velocity shape function f �g� considered.
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boundary conditions of the ®rst kind holds as well for a

slowly varying tube radius, provided the similarity as-

sumption is applicable.

Duct heat transfer results may be presented in terms

of either the average Nusselt number or the bulk tem-

perature as a function of the axial co-ordinate. De-

pending on the practical purpose, either of the

representations may be more advantageous. In this pa-

per, the �H versus f plot is preferred because it is con-

sidered to describe the temperature equilibration in a

more obvious way.

Two special cases for the axial velocity shape func-

tion are of outstanding practical importance. The ®rst

one is the plug ¯ow case

f �g� � 1 �27�

and the second one is the Hagen±Poiseuille case (para-

bolic velocity pro®le)

f �g� � 2�1ÿ g2�: �28�
Though plug ¯ow is less probable in a tube with non-

uniform radius, it plays an important role in ¯ow situ-

ations without solid boundaries, as encountered, for

instance, in liquid jets and the ®bre spinning process. In

such applications, researchers frequently agree upon the

assumption that the axial velocity becomes independent

of the radial co-ordinate some diameters downstream of

the jet nozzle or spinneret. The type of deformation

encountered under these circumstances is almost pure

uniaxial elongation. This case has been treated before by

the author [8].

The parabolic velocity pro®le Eq. (28) occurs in the

fully-developed tube ¯ow of Newtonian liquids. In a

tube with axially varying diameter the velocity pro®le

Eq. (28) can no longer be valid exactly, the degree of

deviation being dependent on the shape of the tube

contour function and the Reynolds number. This issue

will be discussed in more detail in Section 5.

Because of their practical importance the dimen-

sionless bulk temperature is plotted for both special

cases in Fig. 3 as a function of the tube Fourier number

Fo � paL=Q. The solution for plug ¯ow can be taken

from standard textbooks on heat transfer in solid bod-

ies. Eqs. (19)±(20c) with a ¯at velocity pro®le Eq. (27)

merely constitute the mathematical formulation for the

unsteady heating or cooling of an in®nite circular cyl-

inder. The solution for parabolic ¯ow was calculated as

an exponential series using the eigenvalues and con-

stants given by Brown [10].

Note on boundary conditions: Throughout this sec-

tion, uniform wall and entrance temperatures have been

assumed, their di�erence being the driving force for the

heat transfer process. It is, of course, seductive to gen-

eralise the above invariance relation to di�erent thermal

boundary conditions. However, one readily ®nds that

any boundary condition referring to the wall heat ¯ux

will fail to be transformed invariantly because the wall

temperature gradient is inversely proportional to the

local tube radius. Only in the case of an adiabatic tube

wall (homogeneous boundary condition of the second

kind) the invariance with respect to the tube radius

holds. On the other hand, it is clear that the entrance

temperature distribution is irrelevant for the success of

our transformation. Thus it can be deduced that the

equilibration of a non-uniform entrance temperature

distribution within an ideally isolated tube takes place

on the same tube length scale whatever the tube contour

function R�z�.

4. Laminar forced convection in a plane channel with

slowly varying height

Neglecting axial conduction and heat sources, the

heat equation is written in Cartesian co-ordinates as

w�y; z� oT
oz
� v�y; z� oT

oy
� a

o2T
oy2

�29�

with the following boundary conditions of the ®rst kind:

z � 0; ÿH06 y6H0 ) T � T0; �30a�

z > 0; y � �H�z� ) T � Tw: �30b�
As in the tube case, the system of Eqs. (29)±(30b) is

transformed to a material lateral co-ordinate g and a

non-dimensional temperature:

g�y; z� � y
H�z� ; �31a�

H�g; z� � T �y; z� ÿ Tw

T0 ÿ Tw

: �31b�

Fig. 3. Dimensionless bulk (¯ow-average) temperature as a

function of the tube Fourier number, calculated for the plug

¯ow and the parabolic ¯ow cases.
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The lateral convective term is eliminated by this trans-

formation. The resulting di�erential equation is

w�y; z� H�z�� �2 oH
oz
� a

o2H
og2

: �32�

Using the continuity relation

w�y; z�H�z� � Q
2B

g�g�: �33�

Eq. (32) can be written

QH�z�
2B

g�g� oH
oz
� a

o2H
og2

: �34�

Comparing Eq. (34) with Eq. (19), a di�erence becomes

evident between the tube and the channel case. There

remains an explicit channel height dependence in the

heat equation after the transformation. This is due to the

di�erences in the equations describing over-all continu-

ity for the two cases. A stretched axial co-ordinate is

de®ned in order to simplify the di�erential Eq. (34)

f�z� � 2aB
Q

Z z

0

dz
H�z� : �35�

This leads to

g�g� oH
of
� a

o2H
og2

: �36�

The boundary conditions, written in terms of the di-

mensionless variables H; g and f need not be repeated

here, since they are analogous to the dimensionless

boundary conditions derived in the tube case, Eqs.

(20a)±(20c).

Eq. (36) and transformed boundary conditions Eqs.

(30a) and (30b) constitute the dimensionless represen-

tation of a generalised Graetz problem 2 for a plane

channel with uniform height. Hence, every solution de-

rived for a speci®c axial velocity pro®le g�g� and con-

stant channel height may be used as well for the variable

height case. This invariance property may be formulated

as follows:

Let Hg
y

H0
; 2aBz

QH0

� �
be the non-dimensionalised solution 3

of the generalised Graetz problem for a plane channel with

uniform height 2H0. Then the solution to the analogous

problem with non-uniform channel height 2H�z� is given

by Hg
y

H�z� ;
2aB
Q
� R z

0
dz

H�z�

� �
; provided the similarity assump-

tion concerning the ¯ow kinematics is applicable.

The stretched axial co-ordinate Eq. (35) may be in-

terpreted as an e�ective Fourier number (or reciprocal

e�ective Graetz number) which accounts for the e�ect of a

non-uniform channel height on the heat transfer process.

It follows that the bulk or ¯ow-average temperature

�Tg�z� :� 2B
Q
�
Z H�z�

0

Tg�y; z�w�y; z�dy �37�

may be calculated as in the constant height case by using

the e�ective Fourier number Eq. (35):

Let �Hg
2aB
Q

z
H0

� �
be the dimensionless bulk temperature

in plane channel ¯ow for a particular choice of the axial

velocity pro®le g�g� and uniform channel height 2H0. The

dimensionless bulk temperature for a varying channel

height is then given by �Hg
2aB
Q
� R z

0
dz

H�z�

� �
provided the

similarity assumption holds true.

It is well known that laminar convective heat transfer

in a uniform plane channel can be enhanced by de-

creasing the channel height 2H0. For given constant

values of length L, width B and throughput Q this

measure increases the channel Fourier number

Fo � 2aBL=�QH0�. The invariance relation stated above

may be considered as a generalisation of that result for

the case of a non-uniform channel height. It gives a

method for incorporating a given height contour func-

tion H�z� into heat transfer calculations. For given val-

ues of length, width and throughput and a constant

channel wall temperature, channels with di�erent height

contour functions H�z� are thermally equivalent if the

areas under the 1=H�z�-curves are equal. This implies,

for example, that opposing the direction of ¯ow in an

isothermal channel with non-uniform height does not

alter the total heat ¯ux between the ¯uid and the channel

walls.

As in the tube case, two speci®c choices of the

velocity shape function are of outstanding practical

importance. These are plug ¯ow

g�g� � 1 �38�

and parabolic ¯ow

g�g� � 3

2
�1ÿ g2�: �39�

Possible applications for the plug ¯ow solution might be

polymer ®lm processing, whereas the parabolic case

occurs in plate or slit heat exchangers and in ®lm ex-

trusion dies. The functional dependence of the dimen-

sionless bulk temperature on the e�ective Fourier

number is reproduced graphically for those two cases in

Fig. 4. The solution for plug ¯ow has been taken from a

standard textbook. This case is mathematically equiv-

alent with the unsteady heating or cooling of a solid

slab. The solution for parabolic ¯ow has been calculated

using the eigenvalues and constants given by Brown [10].

2 Problem generalised from parabolic (Newtonian) axial

velocity pro®le to an arbitrary velocity pro®le, described by the

shape function g�g�.
3 The subscript `g' is used as a reminder that the quantity

attributed with it is a functional of g�g�.
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Note on boundary conditions: Apart from boundary

conditions of the ®rst kind, as applied above, the in-

variance relation holds also for homogeneous boundary

conditions of the second kind, that is for one or both of

the channel walls being adiabatic. The combination of an

isothermal and an adiabatic duct wall may be of prac-

tical importance in some polymer ¯ow systems where

only one side of a ¯ow channel can be reached by a

thermostatting device.

5. Fluid-mechanical justi®cation for the similarity as-

sumption

So far, only the consequences of the similarity as-

sumption on convective±conductive transport in ducts

with non-uniform cross-section have been considered.

This section is an attempt to demonstrate the degree of

accuracy of that assumption for a given ¯ow situation.

For the sake of simplicity, the analysis shall be restricted

to nearly zero Reynolds number (creeping) ¯ow condi-

tions, that is, inertia terms in the momentum equations are

considered negligible compared with the viscous terms.

In order to facilitate an analytical treatment, it is

furthermore assumed that the melt is Newtonian with

constant viscosity. The ¯ow is then described by Stokes'

equations

0 � ÿgrad p � lD~v; �40�
where p denotes the pressure, l the dynamic viscosity,~v
the velocity vector and D is the Laplacian operator.

No general solution of Stokes' equations is known

for the ¯ow in a duct with arbitrarily varying cross-

section. However, simple solutions may be derived for

the cases where the wall inclination angle is constant,

those cases describing ¯ow in a semi-in®nite cone

or wedge, respectively. The idea of this section is to

compare those exact solutions with the similarity as-

sumption. The degree of deviation between the ¯ow

®elds calculated by both methods gives an idea of the

accuracy of the similarity assumption, although higher

order e�ects such as the in¯uence of the curvature of the

contour function cannot be incorporated herein.

Due to the nature of the four ¯ow situations con-

sidered in this section, there is some risk of getting

confused with co-ordinate systems. Fig. 5 is intended to

visualise the notation applied in the di�erent cases. The

upper half shows how co-ordinates are interrelated in

the comparison between the exact solution for ¯ow in an

in®nite cone and the approximate solution for ¯ow in a

tube with non-uniform radius. The lower half demon-

strates the analogous issue for the ¯ow in a plane

channel with non-uniform height.

Table 1 gives an overview of co-ordinate systems and

the notation for the velocity components used in this

paper.

The comparison between exact and approximate

solutions is actually performed more easily on the

stream functions rather than the velocity ®elds. Thus,

confusion with co-ordinate systems and velocity com-

ponents can be avoided.

5.1. Stokes ¯ow in an in®nite cone

Consider the creeping ¯ow of a Newtonian liquid in a

semi-in®nite cone (Fig. 5, upper half of drawing). At the

apex of the cone, a point source of strength Q is as-

sumed. In spherical polar co-ordinates �q; #;x�, an ax-

isymmetric solution to Stokes' equations satisfying the

no-slip boundary condition at the cone walls # � �a is

given by the velocity ®eld [11]

vq � 3Q
2pq2

� cos2#ÿ cos2a
1ÿ 3cos2a� 2cos3a

; �41a�

Fig. 5. Co-ordinate notation used in the comparison with exact

solutions for ¯ow in a tube with non-uniform radius (upper

half) and ¯ow in a plane channel with non-uniform height

(lower half).

Fig. 4. Dimensionless bulk (¯ow-average) temperature as a

function of the e�ective channel Fourier number, calculated for

the plug ¯ow and the parabolic ¯ow cases.
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v# � 0: �41b�
The stream function, de®ned by

vq � ÿ 1

q2 sin#
� oW
o#

; �42a�

v# � 1

q sin#

oW
oq

�42b�

may be calculated by integrating Eqs. (41a) and (41b) as

W�#� � Q
2p
� 3 � 1ÿ cos#� �cos2a� cos3#ÿ 1

1ÿ 3cos2a� 2cos3a
: �43�

This exact solution has to be compared to the ¯ow ®eld

given by the similarity assumption.

5.2. Stokes ¯ow in an in®nite wedge

Consider the creeping ¯ow of a Newtonian liquid in a

semi-in®nite wedge (Fig. 5, lower half of drawing). At

the apex of the wedge, a line source or sink of strength

Q=B is assumed (volumetric ¯ow rate per unit width of

the wedge). A solution to Stokes' equations in cylindri-

cal polar co-ordinates �r;x� satisfying the no-slip

boundary condition at the wedge walls x � �a is given

by the velocity ®eld [11]:

vr � 1

r
� oU
ox
� Q

Br
� cos�2x� ÿ cos�2a�

sin�2a� ÿ 2acos�2a� ; �44a�

vx � ÿ oU
or
� 0: �44b�

The stream function may be calculated by integrating

Eqs. (44a) and (44b) as:

U�x� � Q
2B
� sin�2x� ÿ 2xcos�2a�

sin�2a� ÿ 2acos�2a� : �45�

Both exact solutions (41a), (41b) and (44a), (44b) de-

scribe a motion upon straight stream-lines with a com-

mon intersection at the origin.

Streamline patterns calculated under the similarity

assumption have, of course, the same features. However,

the distances between streamlines will be di�erent, the

latter di�erence being a measure for the accuracy of the

assumption. Using cartesian co-ordinates, the wedge

wall contour function is given by

H�z� � z � tana: �46�
Hence the reduced lateral co-ordinate can be written

g � y
H�z� �

tanx
tana

: �47�

Using the similarity assumption, the stream function for

¯ow in the wedge is given by

USA�g� � Q
2B
� 3
2
� g � 1

�
ÿ 1

3
g2

�
: �48�

The dimensionless stream function G � 2BU=Q calcu-

lated from Eqs. (45) and (48) is plotted in Fig. 6 versus

the reduced lateral co-ordinate g for several values of the

wedge half-angle a. Up to a half-angle of 15° only small

Table 1

Overview of the notation for co-ordinate systems and velocity components used in this paper

Original problem Flow in a circular tube

with non-uniform radius

Flow in a channel with

non-uniform height

Co-ordinate system used Cylindrical polar Cartesian

r; x; z x; y; z
Velocity components v; ÿ; w ÿ; v; w
Analogy for comparison Flow in a semi-in®nite cone Flow in a semi-in®nite

wedge

Co-ordinate system used in the analogy Spherical polar Cylindrical polar

q; h; x r; x; z
Velocity components in the analogy mq; mh; ÿ mr; mx; ÿ

Fig. 6. Plot of the dimensionless stream function for ¯ow in a

semi-in®nite wedge, calculated from the exact solution of

Stokes' equations and according to the similarity assumption

(`Poiseuille ¯ow') for di�erent values of the wedge half-angle a.

H. Brod / International Journal of Heat and Mass Transfer 44 (2001) 977±987 985



deviations between the exact solution and the similarity

assumption (`Poiseuille ¯ow') are visible.

A similar procedure has been carried through for the

cone ¯ow. The similarity assumption predicts the fol-

lowing stream function:

WSA�g� � Q
2p
� g2 � 2

ÿ ÿ g2
� �49�

with

g � r
R�z� �

tan#

tana
: �50�

The result is shown in Fig. 7 as a plot of the dimen-

sionless stream function F � pW=Q calculated from Eq.

(49) and the exact solution calculated following Eq. (43)

versus g for di�erent values of the cone half-angle a.

Again, up to a � 15° there is excellent agreement be-

tween the two stream functions.

6. Conclusions

Forced convective heat transfer problems in ducts

with slowly varying cross-section can be reduced to the

analogous problems for uniform duct cross-section, if

the ¯ow kinematics obeys the similarity assumption, i.e.

the axial velocity pro®le is locally fully developed. The

latter assumption holds, of course, never exactly but

only within certain limits of accuracy. These limits have

been discussed for creeping ¯ow of a Newtonian liquid

in simpli®ed geometries. For non-Newtonian ¯ow and

more complicated geometries (non-uniform wall incli-

nation angle) there is no direct means of proving the

accuracy of the assumed kinematics, apart from nu-

merical simulation.

The laminar forced convective heat transfer in a cir-

cular duct with weakly non-uniform radius is invariant

with respect to the tube radius. It is only dependent on

the tube Fourier number Fo � paL=Q. Solutions to

generalised Graetz problems derived for the case of a

uniform tube radius may also be applied if the tube ra-

dius is weakly non-uniform. This result holds exactly for

any (axisymmetric) shape of the velocity pro®le, pro-

vided the similarity assumption is justi®ed.

For ¯ow in a plane channel with slowly varying dis-

tance between the channel walls the ¯uid bulk tempera-

ture can be shown to depend only upon the e�ective

Fourier number Foeff :� �aB=Q� � R L
0
�dz=H�z��. The

functional dependence of the bulk temperature on Foeff is

the same as for a channel with uniform height. Hence,

solutions derived for uniform height may also be applied

when the distance between the plates is non-uniform. The

e�ective Fourier number comprises an integral over the

reciprocal value of the local channel height. It is thus seen,

that small values of the local channel height are advan-

tageous for the heat transfer process. This result has been

well known for the case of a uniform channel. It has now

been generalised for a weakly non-uniform channel.

It is emphasised that, using the analogy between heat

and mass transfer, all results derived in this paper may

as well be applied to forced convective mass transfer in

ducts with non-uniform cross-sections.
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